Status of the IPbus Project

Robert Frazier

Greg Iles, Marc Magrans, Dave Newbold, Andrew Rose, Dave Sankey, Tom Williams

Institutes: Bristol, Imperial, RAL, CERN

Talk Overview

- IPbus concept recap
- The last 6 months
- μHAL status
- ControlHub status + performance
- IPbus Firmware status
- Address assignment solutions
- **IPMI** comments
- Future plans

IPbus is...:

- A system for control of μTCA-based hardware over Ethernet
- Replacing the VME HAL, and associated CAEN drivers/controllers

Baseline system consists of:

- sent over UDP IPbus Firmware: receives and acts upon IPbus protocol instructions
- μΗΑL: the end-user programming interface.
- serialising transaction requests from multiple active µHAL clients. ControlHub: forms a single point of contact with the hardware,

Developed entirely in-house

Based on commonplace standards – no industry "lock-in".

Status of the IPbus Project

IPbus Protocol basics 1

- The protocol describes the basic transactions:
- Read
- Write
- Non-incrementing Read/Write
- Atomic Masked Write (Read/Modify/Write)

A32/D32

- Word-addressable, not byte-addressable
- 16 GiB maximum addressable space per AMC

Status of the IPbus Project Robert Frazier, Bristol University 23rd May 2012

IPbus Protocol basics 2

- Each transaction request/response is self-contained
- Has its own header and body
- Transport protocol agnostic
- Transactions can be concatenated together into the same packet
- Queue requests and dispatch when necessary
- Improves network transport efficiency
- Major difference to VME!

Status of the IPbus Project

Robert Frazier, Bristol University

IPbus scalability

- IPbus is designed to be very easily scalable:
- From simple bench-top testing of a single/few cards:

IPbus scalability

All the way up to something much, much bigger:

Many topologies possible – this is just an example. More on this later.

Status of the IPbus Project

Robert Frazier, Bristol University

23rd May 2012

The last 6 months

- Many different groups developing hardware control technologies
- Marc Magrans becomes very worried...
- One project is better or at least unite under common API
- Online Co-ordination reviews competing systems Jan/Feb 2012

API review and requirements gathering begins at end of 2011

- Detailed presentation of the IPbus concept was given
- https://indico.cern.ch/getFile.py/access?contribId=0&resId=0&materialId=slides&confId=164330
- Online co-ordination gave ruling in early March
- IPbus will be hardware access baseline
- μΗΑL to be reworked to form the common API, with *IPbus* as one of the protocol options.
- IPbus/μHAL project to be integrated into CMS online software

The last 6 months

- CMS requirements capture for:
- Network addressing + hardware address assignment
- Locking and synchronisation
- This is still ongoing, as much complexity here
- Particularly with regards to addressing
- See Dave Newbold's section of this talk for more detail on this.

Mid/late March → now:

- IPbus project migrated into CERN-held SVN repository.
- Work begins on required changes to µHAL & ControlHub software
- Packaging of dependencies, integration into nightly build system, RPM build system, etc.

9

Robert Frazier, Bristol University

23rd May 2012

The last 6 months

/trunk: Contributed Lines of Code

Lines

Status today: µHAL

- Supports IPbus Protocol v1.3 direct or via Control Hub
- Baseline features specified by API review complete...:
- …but still in final stages of integration testing with the *Control Hub*

http://cactus.web.cern.ch/cactus/documents/uhal_api_poposal/html/annotated.html

- New config file:
- Abstract board names (e.g. hcal.crate1.slot1) to addresses
- Some HCAL addon requests still in progress
- RPM packaging of externals and µHAL itself is largely complete
- Caveat: although C++ API is now fixed, the address-mapping config files will probably still evolve (see Dave's slides)

Robert Frazier, Bristol University

Status today: Control Hub

- New Control Hub is functionally complete + fully tested
- Still implemented in Erlang
- 100% configuration-free implementation just start it running
- Compatible with IPbus Protocol v1.3

Still to do:

- Build RPMs of ControlHub and dependencies
- Some non-critical secondary features still need to be added:
- Proper logging
- Daemon startup script

Status of the IPbus Project Robert Frazier, Bristol University 23rd May 2012

Control Hub Scaling Test 1

- Many iterations of client sending 4 KB non-incr. read request to various numbers of hardware targets.
- being sent (total read of 4 KB per iteration). Each client request for a particular target results in 30 UDP packets
- Simple test-client used (not *µHAL*)
- Sends hand-crafted packet,
- Waits for response, checks ok
- Repeat.
- Bandwidth results are for application bandwidth
- Only the returned useful payload in used in calculations

Control Hub Scaling Test 1

Targets	_	Ν	ω	4	Ŋ	0	7	∞	9
Scaling cf. single Target	1.00	1.02	1.08	1.08	0.87	0.90	0.82	0.78	0.68

Erlang scheduler starts using 2 cores

Robert Frazier, Bristol University

23rd May 2012

Control Hub Scaling Test 2

- Multiple clients sending requests for all 9 targets simultaneously.
- Sum the data rate received by n active clients, where n = 1 4

Can't explain this scaling fully yet, but it's good!

Firmware Status

Firmware components

- IPbus control logic and fabric + Example slaves
- UDP-driven and SPI-driven bus masters
- Example Ethernet and clocking implementations

Status

- UDP firmware is now rather mature and debugged (50+ users)
- Latest (final?) protocol changes in implementation and testing
- Emphasis turning to performance and reliability enhancements

Performance

- Current firmware targets minimal resource usage
- Can be used even in small low-cost FPGAs
- Performance was so far not the key target
- Ethernet performance strongly depends on buffer size
- Buffer sizes are now parameterised to allow size / performance tradeoff
- With a 16 jumbo frame buffer, we should reach gigabit wire speed

Addressing Scheme, etc

- Action from last meeting
- Deliver a short document proposing an IP addressing scheme
- Draft document may be found at: http://cern.ch/frazier/uHAL_network_addressing.pdf
- Comments and input are necessary and welcome
- Covered in the (not-so-short) document
- Network topology for connection of uTCA hardware
- Assignment of MAC and IP addresses to hardware
- Configuration of module addresses at startup / hot-swap
- Mapping of 'symbolic' (uHAL) module names to addresses
- Several questions and options input needed
- Use cases considered
- A full 'CMS counting room' setup with hundreds of modules
- A test-beam setup with a single crate
- Single module on a bench

Network & Addressing: Key Points

Network topology

- AMC modules are not connected to the general-purpose network
- Packets cannot be directly routed from arbitrary machines to AMCs
- Hardware is connected via a bridge machine ('firewall')
- This can host a control hub, uTCA System Manager, DCS-IPMI bridge user application, etc
- Nothing prevents a hardware control application to run directly here the 'old model'
- A single bridge machine can host several uTCA carriers
- One interface on general-purpose network, n others connect to uTCA carriers

Network addresses

- All Ethernet-connected hardware has 'official' unique MAC address
- MAC addresses are hardcoded or in non-volatile storage
- IP addresses are assigned by an address assignment daemon
- The daemon effectively forms part of the System Manager component
- Two IP address assignment mechanisms: IPMI-based or RARP-based
- The two mechanisms cover different system scales and use cases
- IP addresses are from the 192.168.x.y private space

Name – Address Mapping

uHAL symbolic names

- Hierarchical names of the type subsystem.crate.module
- e.g. HCAL.sector2.module_a / GCT.input_crate.slot2
- Naming scheme assumes nothing about the protocol or hardware
- 'Slot' has no meaning at this level but modules are numbered

Mapping to IP addresses

- Two-file configuration solution
- Map module name to a 'module number', used as last byte of IP address Map subsystem.crate to a physical uTCA carrier (and a bridge host)
- The uHAL knows which bridge host to talk to
- ▶ Completely transparent to user application no knowledge of IP address is needed
- The bridge host routing table sends packets to the right interface

Future ideas

- This scheme is not IP or UDP specific
- Can extend to PCIe-connected modules (or even VME)

IPMI Comments

Our (unambitious) goal

- Find out how to (easily) obtain list of active AMCs via IPMI
- Find out how to send arbitrary commands to AMCs
- Test IP address assignment mechanism

The experience

- Not good: Open source tools do not 'understand' TCA IPMB topology
- Sending raw commands is possible, and works, but ugly
- Things will unravel fast if errors or lost packets occur on the IPMB
- Vendors do not appear interested in support, fixing bugs
- Possible to crash NAT MCH with malformed IPMI packets

MMC code

- IPMI address assignment needs agreed IPMI extensions by MMC
- We have converged on an SPI interface between MMC and FPGA
- Proposal: use SPI fns (Tom Gorski) for out-of-band access to IPbus space
- This can include read-only config information and read-write configuration space

Future plans

- Expect a first RPM release in late J
- Expect a first RPM release in late June
- Usable compiled from source before then if desperate
- Frequent and regular releases with new features after this
- Much initial effort gone into test, packaging + release machinery.
- This effort is ~one-off
- New features to come are:
- HCAL "addons".
- Support for new, higher-performance firmware
- Locking + sychronisation features
- Evolution of addressing

Status of the IPbus Project

Conclusions

- First RPM release of new µHAL and Control Hub expected in June
- Initial release will support small footprint IPbus v1.3 firmware only
- deployment now understood Many of the more advanced requirements for a full-scale CMS
- Draft document now available for hardware address assignment
- Needs further collaboration input and review
- More needed...

Status of the IPbus Project Robert Frazier, Bristol University 23rd May 2012

Robert Frazier, Bristol University 23rd May 2012

24

Software: Control Hub 1

- Analogous to a VME crate controller + driver software
- The Control Hub forms a single point of contact with the hardware
- "Owns" the hardware network
- Control Hub can also be thought of as an IPbus packet router
- Current functionality
- Accepts up to 64 simultaneous microHAL clients
- Makes best use of available bandwidth
- Bandwidth to each board is multiplexed across gigabit connection
- Highly scalable can control multiple crates of boards
- Pretty much only limited by number of Ethernet connections and CPU cores you can cram in a single rack PC

Robert Frazier, Bristol University

23rd May 2012

Status of the IPbus Project

Software: Control Hub 2

Status of the IPbus Project

Robert Frazier, Bristol University

23rd May 2012

26

Use-cases: test-beam 2

"Control Hub" acts as single point of contact with hardware

Control app. can now safely instantiate independent client threads

Status of the IPbus Project

Use-cases: full-scale 2

ity **2**3rd May 2012

28

Testing IPbus 1

- Extensive test system in Bristol
- On three rack PCs, we run:
- Multiple µHAL instances
- Single Control Hub
- Many (logical) IPbus hosts...
- Running on five physical development boards
- 1 x SP605
- 3 x Atlys SP605 Equiv.
- 1 x Avnet V5

Testing IPbus 2

- And at Imperial we have
- The TMT calorimeter-trigger demonstrator!
- 6 x Mini-T V5 boards
- IPbus over UDP has so far proved very solid
- Extensive soak-testing performed
- Good understanding of packet lost rates (1 in ~200 million)

Status of the IPbus Project

Robert Frazier, Bristol University

23rd May 2012